Optimal MPC for tracking of constrained linear systems

نویسندگان

  • Antonio Ferramosca
  • Daniel Limón
  • Ignacio Alvarado
  • Teodoro Alamo
  • F. Castaño
  • Eduardo F. Camacho
چکیده

This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden. The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae, and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand, or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material. Model predictive control (MPC) is one of the few techniques which is able to handle constraints on both state and input of the plant. The admissible evolution and asymptotic convergence of the closed-loop system is ensured by means of suitable choice of the terminal cost and terminal constraint. However, most of the existing results on MPC are designed for a regulation problem. If the desired steady-state changes, the MPC controller must be redesigned to guarantee the feasibility of the optimisation problem, the admissible evolution as well as the asymptotic stability. Recently, a novel MPC has been proposed to ensure the feasibility of the optimisation problem, constraints satisfaction and asymptotic evolution of the system to any admissible target steady-state. A drawback of this controller is the loss of a desirable property of the MPC controllers: the local optimality property. In this article, a novel formulation of the MPC for tracking is proposed aimed to recover the optimality property maintaining all the properties of the original formulation. 1. Introduction Model predictive control (MPC) is one of the most successful techniques of advanced control in the process industry. This is due to its control problem formulation, the natural usage of the model to predict the expected evolution of the plant, the optimal character of the solution and the explicit consideration of hard constraints in the optimisation problem. Thanks to the recent developments of the underlying theoretical framework, MPC has become a mature control technique capable to provide controllers ensuring stability, robustness, constraint satisfaction and tractable computation for linear and for non-linear systems (Camacho and Bordons 2004). The control law is calculated by predicting the evolution of the system and computing the admissible sequence of control inputs which makes the system evolves …

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Constrained Controller Design for Real-time Delay Recovery in Metro Systems

This study is concerned with the real-time delay recovery problem in metro loop lines. Metro is the backbone of public transportation system in large cities. A discrete event model for traffic system of metro loop lines is derived and presented. Two effective automatic controllers, linear quadratic regulator (LQR) and model predictive controller (MPC), are used to recover train delays. A newly-...

متن کامل

Constrained Robust Optimal Trajectory Tracking: Model Predictive Control Approaches

This thesis is concerned with the theoretical foundations of Robust Model Predictive Control and its application to tracking control problems. Its first part provides an introduction to MPC for constrained linear systems as well as a survey of different Robust MPC methodologies. The second part consists of a discussion of the recently developed Tube-Based Robust MPC framework and its extension ...

متن کامل

Optimal Control for Descriptor Systems: Tracking Problem (RESEARCH NOTE)

Singular systems have been studied extensively during the last two decades due Abstract to their many practical applications. Such systems possess numerous properties not shared by the well-known state variable systems. This paper considers the linear tracking problem for the continuous-time singular systems. The Hamilton-Jacobi theory is used in order to compute the optimal control and associa...

متن کامل

Design of multi-parametric NCO tracking controllers for linear dynamic systems

A methodology for combining multi-parametric programming and NCO tracking is presented in the case of linear dynamic systems. The resulting parametric controllers consist of (potentially nonlinear) feedback laws for tracking optimality conditions by exploiting the underlying optimal control switching structure. Compared to the classical multi-parametric MPC controller, this approach leads to a ...

متن کامل

MPC of constrained discrete-time linear periodic systems - A framework for asynchronous control: Strong feasibility, stability and optimality via periodic invariance

State-feedback model predictive control (MPC) of discrete-time linear periodic systems with timedependent state and input dimensions is considered. The states and inputs are subject to periodically time-dependent, hard, convex, polyhedral constraints. First, periodic controlled and positively invariant sets are characterized, and a method to determine the maximum periodic controlled and positiv...

متن کامل

The Exact Solution of Min-Time Optimal Control Problem in Constrained LTI Systems: A State Transition Matrix Approach

In this paper, the min-time optimal control problem is mainly investigated in the linear time invariant (LTI) continuous-time control system with a constrained input. A high order dynamical LTI system is firstly considered for this purpose. Then the Pontryagin principle and some necessary optimality conditions have been simultaneously used to solve the optimal control problem. These optimality ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Int. J. Systems Science

دوره 42  شماره 

صفحات  -

تاریخ انتشار 2011